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interest in ice sheet dynamics has been stimulated by its many practical applications. 
Among these are problems of increasing the efficiency of the relatively recently discovered 
resonant method of ice-breaking using air cushion vessels (ACV's) [i]. 

The factors affecting flexure-gravitation wave (FGW) parameters, and thus, the ice- 
breaking ability of an ACV for uniform rectilinear motion of the latter were considered in 
[2]. As large scale model and field experiments with ACV's have shown, the capabilities of 
the resonant method can be improved, if the dimensions of the body of water or the vessel 
parameters do not permit excitation of waves of sufficient intensity to destroy the ice during 
uniform rectilinear motion, the ice cover can be broken by an additional dynamic load produced 
by periodic change of the pressure in the air cushion. The vertical oscillations of the 
vessel produced in this manner at some resonant frequency w lead to excitation of a flexure- 
gravitation wave which destroys the ice over a significant area. The character of the ice 
damage is shown in Figure i. 

This present workwill study the dependence of the stress-deformed state of the ice sheet 
upon propagation of waves stemming from a periodically varying load with rectangular form. 
The problem of ice sheet oscillations due to action of different types of loads has been 
studied in many works. Results of a study of transient oscillations of an ice sheet, treated 
as an elastic plate, under the action of moving harmonically varying pressure were presented 
in [3]. in [4] the process of development of transient flexure-gravitation waves produced by 
impulsive disturbances caused by displacement of the bottom of the basin were studied. The 
solution of the planar problem of the effect of periodic disturbances on oscillations of 
elastic ice with and without consideration of drift were obtained in [5, 6]. 

Analysis of known experimental-theoretical studies of plate dynamics on an elastic base 
indicate how well this problem has been studied. However the question of calculating the 
stress-deformed state of an ice sheet under conditions of flexure-gravitation resonance re- 
mains unconsidered. The present study will attempt to solve this problem. 

i. Formulation of the Problem and Theoretical Solution. Numerous experiments have shown 
that in ice sheet loading by resonant flexure gravitation waves the ice manifests viscoelastic 
properties. Therefore in solving the problem both the plastic and elastic properties of the 
ice will be considered. 

The maximum frequency of ACV vertical oscillation which can be realized in practice is 
much less than the quantity 2c/h i ~ c [wnere is the speed of transverse elastic waves in the ice 
sheet and h is the ice thickness), permitting use of the theory of inflection of thin plates 
[6]. Transient flexure-gravitation oscillations of the ice sheet for forced vertical harmonic 
oscillations of the vessel will be studied in the linear formulation. The ice will be con- 
sidered a viscoelastic plate of infinite extent, the behavior of which is described by the 
Kelvin-Foight model. 

The differential equation for inflection of the ice sheet has the form 

D(l+~o/~-)t)V4w+~h ~ ~ ~ el Ot~-! + Q2 ~ = / (x,  g, t), (1.i)  

where D = Gh3/3 is the cylindrical strength of the plate; G is the modulus of elasticity for 
shear; ~ is the deformation relaxation time; w is the deflection of the ice; Pi, P2 are the 
densities of ice and water respectively; f(x, y, z) is the load distributed over the ice 
surface; x, y, z is a Cartesian coordinate system with z axis directed vertically upward; 
is the potential of liquid motion velocity, satisfying the equation 
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V~O = O. ( 1 . 2 )  

The boundary conditions for Eq. (1.2) are Eq. (i.I) and the equality 

a w / a t  = ao/azL=o, a~/azI,=_. 

(H = const = water depth) The initial conditions "~ y, z, �9 ~(x, 0) = 0, w(x, y, 0) := 0 express 
the absence of disturbances in the ice--water system. 

Since the solution for an arbitrary load can be obtained by superposition, we will first 
consider the action of a concentrated load 

](x, y, t) = Pg~(x, y)O(t). 

Here P = P0exp(imn);*" '' P0 = const; 0(x,~ y) is a delta function; 0(t) is a Heaviside function: 

t < O ;  ~ i s  t h e  c i r c u l a r  f r e q u e n c y  of  t h e  f o r c e d  o s c i l l a t i o n s .  

The s o l u t i o n  of  Eq. ( 1 . 2 )  w i t h  c o n s i d e r a t i o n  o f  boundary  c o n d i t i o n s  f o r  p l a t e  d e f l e c t i o n s  
and t h e  v e l o c i t y  p o t e n t i a l  can be w r i t t e n  in  t h e  form 

w (x, y. t) = ( 2 ~  wz~ (t) exp [-- i (ix + "qY)1 d~, dq, 
- - o o  - - m o  

~ (I) (x, g, t ) =  ~ _ . ~  - ,  @~n (t) ch [(H + z) k] exp [-- i(kx + w ) l d s  

The delta function is represented here as an integral 

-- i i S e x p l - - i ( ) ~ x + w ) l d ) ~ d  q. 5(x,y) (2n) ~ . 

- - ~  - - o o  

According to Eq. (i.i) the functions wl~(t) satisfy the equation 

~'o ' " " " 

ihh ~ k t~ . t f )  w~.. + D ~ k 4 . , , n + ( O k  4+p2g) w~n=exp(pt)O(t) 

and the initial conditions wA~(0) = wA~(0) = 0, where k = ff~2 + ~2, p = im. 

conditions we also have 

(1.3) 

From the boundary 

i 
q~.n (t) - k sh A'H u')'n" 

which can be used to determine w~x, y, t). 

The solution of Eq. (1.3) can be found by the operation method. 
Laplace transform of the function wAD(t): 

- i -  We denote by wxq~ p) the 

oo 

L (w. ,  (t)) = i e-~p ( - -  ; t )  w,.,~ (t) dt = ,7..~ (;). 
0 

We then obtain 

L(exp (pt)O(t)) = t/(/7-- io), L([v,m(t)) = pu,~n(p), L(~zn(t)) = p2tv~n(~); 

P1 

w~ (~) = (~_ ~) (~ + ~ + ~) 

(n = I/(p~h +pJ (k  th kH)), l = D'ck4n, m = (Dk 4 + p2g)n). 

(i.4) 
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Using inversion formulas with Eq. (1.4) for t ~ 0 we find 

W~V I ( t )  = n (k2 - -  p)  e x p  ( k i t )  - -  (k t - -  p)  e x p  (]g2t) --~ (k  I - - / r  (~xp ( p t )  
. . . . . . . . . .  (k~ - k~) ( ~  + zp + . , )  

Now let the load distributed over the area ~ of the plane x, y have the form 

f (x ,  y ,  t) = ~ ( x ,  y)  exp (poe(t). 

Here r > 0 is the . . . . . .  ' amp• factor, g(x, y) is the intensity of the load, related to the 
vessel weight by the expression 

Q= [ y lq(x,.)ldxd.. 
Q 

Then 

X 

w (x, y, t) (~a) 2 Real y y q (~, ~)d~ dr~ X 
f~ 

oo r 

.f .[ wxu (t) exp {-- i[Z (x - -  ~) + n (Y - -  ~)1} d~, d,|. 
--oo - - ~  

(1 .5 )  

Assuming that q(x, y) = const, while the load is distributed over the area of a rec- 
tangle ~ with sides 2a, 2b (-a i x ! a, -b ! Y ! b), from Eq. (1.5) we obtain 

oa oo 

rq _~  ~ ~' sin~.a sin~lb 
w (x, y,  t) = ~_2 R~a~ I 1 ~- w ~  (t) exp [-- i (%x + ~lY)] d~,dll. 

From the known deflection w we determine the maximum stresses produced from the expres- 
sions 

6M x 6M u 6M~y 

(Yx h2 , -7, --~-, 

where i, Ty ~ ~ q- P ax" } ' M ~ y = D ( I - - 1 0  I +  ay- / 

O•) aSw' 
"[ ax---@' ~ is the Poisson coefficient for the ice. 

F i g .  1 
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The deflection of the ice sheet w and the bending moments Mx, My, Mxy, can be represented 

as the sums of two terms, the first of which is the result of the forced system oscillations 

only, while the second is a transient which decays with time: 

w = B(A~ e x p  (pt) q- A.) ,  M~ = B D ( A  a exp  (pt) -F A ~ ) ,  

M u = BD(A~ exp  (pt) q- A6), Mxu = B D ( I  - -  ~)(A 7 exp  (pt) -F As).  

Here B = ~, Ai= 
0 0 

Cicos)~xcos~]ydhd~ l, i = t ,  2 . . . . .  8; Cz = n sin ~a sin ~lb . 
pU + l p-~- m k ~l 

C7 

C 1 
C2 -- k, ----k 2 [(k~ -- p) exp (k~t) - -  (k 1 - -  p) exp (k2t)] for k 1 r k~; 

C2---- Ca [(kl - -  p ) t  - -  i ] e x p ( k ~ t )  f o r  k~----k2; 

c~ = (x "~ + ~ D ( I  + ~p)Q; c,  = (~ + ~C)(c~ + ~c2); 

c~ = (q~ + ~ ) ( t  + ~p)C,; c,  = (w" + ~ ) ( c ~  + ~c,); 

= ( t  + "~p)C~)~Tl tg  ~,x tg  ~qg; Cs = (C~ + ~c(2)~T 1 tg  kz  tg  rig. 

We note that the transient processes for free system oscillations, i.e., for f = 0, are 

also defined by the roots k I and k 2. This process is of a decaying oscillatory character 
for 

4n~v~ = m-- >0 (1.6) 

(v c is the frequency of free system oscillation). 

2. Results. The expressions presented above were used to calculate the stress-deformed 
state of an ice sheet for various frequencies v of forced oscillation and time x. Calcula- 

tions were performed for M = 0.33, h = 0.5 m, H = 5 m, Pl = 900 kg/m 3, a = i0 m, P2 = i000 
kg/m 3, G = 2-i0 s Pa, b = 5 m, q = -2000 Pa, r = i, x = i0 sec. As the characteristic deflec- 

tion the static value w 0 = 0.044 m was chosen at x = y = 0, with a characteristic stress o 0 = 
106 Pa. 
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F igure  2 shows r e s u l t s  o f  c a l c u l a t i o n s  of  w = w/w 0, ~x = ~ 1 7 6  and ~y = Oy/O o a t  the 

point x = y = 0 for sudden load application (~ = 0). Such ice sheet loading is characterized 
by significant (up to 30%) growth in stress and gradual increase in ice deflection. Stab- 
ilization of the process occurs over a time approximately equal to the relaxation time T. 

Calculations show that the stress-deformed state of the ice sheet depends significantly 
on T, i.e., the parameter characterizing the viscous properties of the ice. Different 
values lead to a qualitative change in the character of deformation, as well as differences 
in the quantitative resonant frequency values (Fig. 3). However, as follows from processing 
of recordings of damping ice sheet oscillations [7], the value of T for natural ice is quite 
stable and lies in the range 10-15 sec. iVnerefore the most probable resonant frequency for 
the calculated ice configuration vp = 0.05 sec -~ This value practically coincides with the 
resonant frequency of a flexure-gravitation wave excited by a load moving over the ice. The 
maximum stresses and deformations of the ice sheet correspond to forced oscillation frequen- 
cies in the range of ice-water system free oscillations defined by Eq. (1.6). 

The development of the process of exit to a regime of forced ice oscillations about the 
static equilibrium position of the water-ice-load system is shown in Fig. 4 for v = 0.i and 
0.05 sec -x (solid line and dashes). As follows from the calculations, the transient process 
decays over approximately two forced oscillation periods. 

The decay of the wave as a function of distance from the center of load application for 
v = 0.05 sec -I is shown in Fig. 5 (a, along the x axis, b, along the y axis). 

The present study will permit development of practical recommendations for carrying out 
ice-breaking tasks by the resonant method realized with an air cushion vessel or other perio- 
dically varying load. 
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